Basket cell dichotomy in microcircuit function.
نویسندگان
چکیده
A diversity of GABAergic cell types exist within each brain area, and each cell type is thought to play a unique role in the modulation of principal cell output. Basket cells, whose axon terminals surround principal cell somata and proximal dendrites, have a privileged and influential position for regulating the firing of principal cells. This review explores the dichotomy of the two basket cell classes, cholecystokinin- (CCK) and parvalbumin (PV)-containing basket cells, beginning with differences at the level of the individual cell and subsequently focusing on two ways in which this intrinsic dichotomy is enhanced by extrinsic factors. Neuromodulatory influences, exemplified by the effects of the peptide CCK, dynamically enhance the differential functions of the two cell types. Specifications at the level of the postsynaptic principal cell, including input-specific differences in chloride handling and differences in long-range projection patterns of the principal cell targets, also enhance the distinct network function of basket cells. In this review, new findings will be highlighted concerning the roles of neuromodulatory control and postsynaptic long-range projection pattern in the definition of basket cell function.
منابع مشابه
Differential excitatory control of 2 parallel basket cell networks in amygdala microcircuits
Information processing in neural networks depends on the connectivity among excitatory and inhibitory neurons. The presence of parallel, distinctly controlled local circuits within a cortical network may ensure an effective and dynamic regulation of microcircuit function. By applying a combination of optogenetics, electrophysiological recordings, and high resolution microscopic techniques, we u...
متن کاملA Cortical Attractor Network with Martinotti Cells Driven by Facilitating Synapses
The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding ...
متن کاملAltered Oscillatory Dynamics of CA1 Parvalbumin Basket Cells during Theta–Gamma Rhythmopathies of Temporal Lobe Epilepsy
Recent reports in human demonstrate a role of theta-gamma coupling in memory for spatial episodes and a lack of coupling in people experiencing temporal lobe epilepsy, but the mechanisms are unknown. Using multisite silicon probe recordings of epileptic rats engaged in episodic-like object recognition tasks, we sought to evaluate the role of theta-gamma coupling in the absence of epileptiform a...
متن کاملEncoding and Retrieval in a CA1 Microcircuit Model of the Hippocampus
Recent years have witnessed a dramatic accumulation of knowledge about the morphological, physiological and molecular characteristics, as well as connectivity and synaptic properties of neurons in the mammalian hippocampus. Despite these advances, very little insight has been gained into the computational function of the different neuronal classes; in particular, the role of the various inhibit...
متن کاملTransient Developmental Purkinje Cell Axonal Torpedoes in Healthy and Ataxic Mouse Cerebellum
Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells - known as torpedoes - have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 590 4 شماره
صفحات -
تاریخ انتشار 2012